Part Number Hot Search : 
XCL201 00211 A3842 MM5Z4V7 41640 M5M510 TN5125 FN1198
Product Description
Full Text Search
 

To Download AT89C5100 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Features
* Compatible with MCS-51TM Products * 4K Bytes of In-System Reprogrammable Flash Memory * * * * * * * *
- Endurance: 1,000 Write/Erase Cycles Fully Static Operation: 0 Hz to 24 MHz Three-level Program Memory Lock 128 x 8-bit Internal RAM 32 Programmable I/O Lines Two 16-bit Timer/Counters Six Interrupt Sources Programmable Serial Channel Low-power Idle and Power-down Modes
Description
The AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash programmable and erasable read only memory (PEROM). The device is manufactured using Atmel's high-density nonvolatile memory technology and is compatible with the industry-standard MCS-51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C51 is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control applications.
8-bit Microcontroller with 4K Bytes Flash AT89C51
Not Recommended for New Designs. Use AT89S51.
Pin Configurations
P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 RST (RXD) P3.0 (TXD) P3.1 (INT0) P3.2 (INT1) P3.3 (T0) P3.4 (T1) P3.5 (WR) P3.6 (RD) P3.7 XTAL2 XTAL1 GND
PDIP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 VCC P0.0 (AD0) P0.1 (AD1) P0.2 (AD2) P0.3 (AD3) P0.4 (AD4) P0.5 (AD5) P0.6 (AD6) P0.7 (AD7) EA/VPP ALE/PROG PSEN P2.7 (A15) P2.6 (A14) P2.5 (A13) P2.4 (A12) P2.3 (A11) P2.2 (A10) P2.1 (A9) P2.0 (A8)
PQFP/TQFP
P1.4 P1.3 P1.2 P1.1 (T2 EX) P1.0 (T2) NC VCC P0.0 (AD0) P0.1 (AD1) P0.2 (AD2) P0.3 (AD3) 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 12 13 14 15 16 17 18 19 20 21 22
P1.5 P1.6 P1.7 RST (RXD) P3.0 NC (TXD) P3.1 (INT0) P3.2 (INT1) P3.3 (T0) P3.4 (T1) P3.5
1 2 3 4 5 6 7 8 9 10 11
PO.4 (AD4) P0.5 (AD5) P0.6 (AD6) P0.7 (AD7) EA/VPP NC ALE/PROG PSEN P2.7 (A15) P2.6 (A14) P2.5 (A13)
PLCC
P1.4 P1.3 P1.2 P1.1 P1.0 NC VCC P0.0 (AD0) P0.1 (AD1) P0.2 (AD2) P0.3 (AD3) (WR)P3.6 (RD) P3.7 XTAL2 XTAL1 GND NC (A8) P2.0 (A9) P2.1 (A10) P2.2 (A11) P2.3 (A12) P2.4 18 19 20 21 22 23 24 25 26 27 28
P1.5 P1.6 P1.7 RST (RXD) P3.0 NC (TXD) P3.1 (INT0) P3.2 (INT1) P3.3 (T0) P3.4 (T1) P3.5 7 8 9 10 11 12 13 14 15 16 17
6 5 4 3 2 1 44 43 42 41 40
39 38 37 36 35 34 33 32 31 30 29
PO.4 (AD4) P0.5 (AD5) P0.6 (AD6) P0.7 (AD7) EA/VPP NC ALE/PROG PSEN P2.7 (A15) P2.6 (A14) P2.5 (A13)
(WR)P3.6 (RD) P3.7 XTAL2 XTAL1 GND GND (A8) P2.0 (A9) P2.1 (A10) P2.2 (A11) P2.3 (A12) P2.4
Rev. 0265G-02/00
1
Block Diagram
P0.0 - P0.7 P2.0 - P2.7
VCC PORT 0 DRIVERS GND PORT 2 DRIVERS
RAM ADDR. REGISTER
RAM
PORT 0 LATCH
PORT 2 LATCH
FLASH
B REGISTER
ACC
STACK POINTER
PROGRAM ADDRESS REGISTER
TMP2
TMP1
BUFFER
ALU INTERRUPT, SERIAL PORT, AND TIMER BLOCKS
PC INCREMENTER
PSW
PROGRAM COUNTER
PSEN ALE/PROG EA / VPP RST PORT 1 LATCH PORT 3 LATCH TIMING AND CONTROL INSTRUCTION REGISTER DPTR
OSC PORT 1 DRIVERS PORT 3 DRIVERS
P1.0 - P1.7
P3.0 - P3.7
2
AT89C51
AT89C51
The AT89C51 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator and clock circuitry. In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The Power-down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset. Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pullups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application, it uses strong internal pullups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register. Port 2 also receives the high-order address bits and some control signals during Flash programming and verification. Port 3
Pin Description
VCC Supply voltage. GND Ground. Port 0 Port 0 is an 8-bit open-drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as highimpedance inputs. Port 0 may also be configured to be the multiplexed loworder address/data bus during accesses to external program and data memory. In this mode P0 has internal pullups. Port 0 also receives the code bytes during Flash programming, and outputs the code bytes during program verification. External pullups are required during program verification. Port 1 Port 1 is an 8-bit bi-directional I/O port with internal pullups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pullups. Port 1 also receives the low-order address bytes during Flash programming and verification. Port 2 Port 2 is an 8-bit bi-directional I/O port with internal pullups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins they are pulled high by the internal pullups and can be used as inputs. As inputs,
Port 3 is an 8-bit bi-directional I/O port with internal pullups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL) because of the pullups. Port 3 also serves the functions of various special features of the AT89C51 as listed below:
Port Pin P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 P3.6 P3.7 Alternate Functions RXD (serial input port) TXD (serial output port) INT0 (external interrupt 0) INT1 (external interrupt 1) T0 (timer 0 external input) T1 (timer 1 external input) WR (external data memory write strobe) RD (external data memory read strobe)
Port 3 also receives some control signals for Flash programming and verification. RST Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. ALE/PROG Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming. In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE
3
pulse is skipped during each access to external Data Memory. If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode. PSEN Program Store Enable is the read strobe to external program memory. When the AT89C51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. EA/VPP External Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset. EA should be strapped to V C C for internal program executions. This pin also receives the 12-volt programming enable voltage (VPP) during Flash programming, for parts that require 12-volt VPP. XTAL1 Input to the inverting oscillator amplifier and input to the internal clock operating circuit. XTAL2 Output from the inverting oscillator amplifier.
unconnected while XTAL1 is driven as shown in Figure 2. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.
Idle Mode
In idle mode, the CPU puts itself to sleep while all the onchip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset. It should be noted that when idle is terminated by a hard ware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory. Figure 1. Oscillator Connections
C2 XTAL2
C1 XTAL1
Oscillator Characteristics
XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 1. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left
GND
Note:
C1, C2 = 30 pF 10 pF for Crystals = 40 pF 10 pF for Ceramic Resonators
Status of External Pins During Idle and Power-down Modes
Mode Idle Idle Power-down Power-down Program Memory Internal External Internal External ALE 1 1 0 0 PSEN 1 1 0 0 PORT0 Data Float Data Float PORT1 Data Data Data Data PORT2 Data Address Data Data PORT3 Data Data Data Data
4
AT89C51
AT89C51
Figure 2. External Clock Drive Configuration ters retain their values until the power-down mode is terminated. The only exit from power-down is a hardware reset. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before VCC is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.
Program Memory Lock Bits
On the chip are three lock bits which can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the table below. When lock bit 1 is programmed, the logic level at the EA pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value, and holds that value until reset is activated. It is necessary that the latched value of EA be in agreement with the current logic level at that pin in order for the device to function properly.
Power-down Mode
In the power-down mode, the oscillator is stopped, and the instruction that invokes power-down is the last instruction executed. The on-chip RAM and Special Function Regis-
Lock Bit Protection Modes
Program Lock Bits LB1 1 2 U P LB2 U U LB3 U U Protection Type No program lock features MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further programming of the Flash is disabled Same as mode 2, also verify is disabled Same as mode 3, also external execution is disabled
3 4
P P
P P
U P
5
Programming the Flash
The AT89C51 is normally shipped with the on-chip Flash memory array in the erased state (that is, contents = FFH) and ready to be programmed. The programming interface accepts either a high-voltage (12-volt) or a low-voltage (V CC ) program enable signal. The low-voltage programming mode provides a convenient way to program the AT89C51 inside the user's system, while the high-voltage programming mode is compatible with conventional thirdparty Flash or EPROM programmers. The AT89C51 is shipped with either the high-voltage or low-voltage programming mode enabled. The respective top-side marking and device signature codes are listed in the following table.
VPP = 12V Top-side Mark AT89C51 xxxx yyww (030H) = 1EH (031H) = 51H (032H) =F FH VPP = 5V AT89C51 xxxx-5 yyww (030H) = 1EH (031H) = 51H (032H) = 05H
and data for the entire array or until the end of the object file is reached. Data Polling: The AT89C51 features Data Polling to indicate the end of a write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written datum on PO.7. Once the write cycle has been completed, true data are valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated. Ready/Busy: The progress of byte programming can also be monitored by the RDY/BSY output signal. P3.4 is pulled low after ALE goes high during programming to indicate BUSY. P3.4 is pulled high again when programming is done to indicate READY. Program Verify: If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. The lock bits cannot be verified directly. Verification of the lock bits is achieved by observing that their features are enabled. Chip Erase: The entire Flash array is erased electrically by using the proper combination of control signals and by holding ALE/PROG low for 10 ms. The code array is written with all "1"s. The chip erase operation must be executed before the code memory can be re-programmed. Reading the Signature Bytes: The signature bytes are read by the same procedure as a normal verification of locations 030H, 031H, and 032H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows. (030H) = 1EH indicates manufactured by Atmel (031H) = 51H indicates 89C51 (032H) = FFH indicates 12V programming (032H) = 05H indicates 5V programming
Signature
The AT89C51 code memory array is programmed byte-bybyte in either programming mode. To program any nonblank byte in the on-chip Flash Memory, the entire memory must be erased using the Chip Erase Mode. Programming Algorithm: Before programming the AT89C51, the address, data and control signals should be set up according to the Flash programming mode table and Figure 3 and Figure 4. To program the AT89C51, take the following steps. 1. Input the desired memory location on the address lines. 2. Input the appropriate data byte on the data lines. 3. Activate the correct combination of control signals. 4. Raise EA/VPP to 12V for the high-voltage programming mode. 5. Pulse ALE/PROG once to program a byte in the Flash array or the lock bits. The byte-write cycle is self-timed and typically takes no more than 1.5 ms. Repeat steps 1 through 5, changing the address
Programming Interface
Every code byte in the Flash array can be written and the entire array can be erased by using the appropriate combination of control signals. The write operation cycle is selftimed and once initiated, will automatically time itself to completion. All major programming vendors offer worldwide support for the Atmel microcontroller series. Please contact your local programming vendor for the appropriate software revision.
6
AT89C51
AT89C51
Flash Programming Modes
Mode Write Code Data
RST
H
PSEN
L
ALE/PROG
EA/VPP
H/12V
P2.6
L
P2.7
H
P3.6
H
P3.7
H
Read Code Data Write Lock Bit - 1
H H
L L
H
H H/12V
L H
L H
H H
H H
Bit - 2
H
L
H/12V
H
H
L
L
Bit - 3
H
L
H/12V
H
L
H
L
Chip Erase
H
L
(1)
H/12V
H
L
L
L
Read Signature Byte Note:
H
L
H
H
L
L
L
L
1. Chip Erase requires a 10 ms PROG pulse.
Figure 3. Programming the Flash
+5V
Figure 4. Verifying the Flash
+5V
AT89C51
A0 - A7 ADDR. OOOOH/OFFFH A8 - A11 SEE FLASH PROGRAMMING MODES TABLE P1 P2.0 - P2.3 P2.6 P2.7 P3.6 P3.7 XTAL2 EA VIH/VPP ALE PROG SEE FLASH PROGRAMMING MODES TABLE VCC P0 PGM DATA A0 - A7 ADDR. OOOOH/0FFFH A8 - A11 P1
AT89C51
VCC P0 PGM DATA (USE 10K PULLUPS)
P2.0 - P2.3 P2.6 P2.7 P3.6 P3.7 XTAL2
ALE VIH EA
3-24 MHz
3-24 MHz
XTAL1 GND
RST PSEN
VIH
XTAL1 GND
RST PSEN
VIH
7
Flash Programming and Verification Waveforms - High-voltage Mode (VPP = 12V)
P1.0 - P1.7 P2.0 - P2.3 PORT 0 tAVGL ALE/PROG tSHGL
VPP PROGRAMMING ADDRESS VERIFICATION ADDRESS
tAVQV
DATA IN DATA OUT
tDVGL
tGHDX
tGHAX tGHSL
LOGIC 1 LOGIC 0
tGLGH
EA/VPP tEHSH P2.7 (ENABLE) tGHBL P3.4 (RDY/BSY)
tELQV
tEHQZ
BUSY
READY
tWC
Flash Programming and Verification Waveforms - Low-voltage Mode (VPP = 5V)
P1.0 - P1.7 P2.0 - P2.3 PORT 0 tAVGL ALE/PROG tSHGL EA/VPP tEHSH P2.7 (ENABLE) tGHBL P3.4 (RDY/BSY)
BUSY READY PROGRAMMING ADDRESS VERIFICATION ADDRESS
tAVQV
DATA IN DATA OUT
tDVGL
tGHDX
tGHAX
tGLGH
LOGIC 1 LOGIC 0
tELQV
tEHQZ
tWC
8
AT89C51
AT89C51
Flash Programming and Verification Characteristics
TA = 0C to 70C, VCC = 5.0 10%
Symbol VPP
(1)
Parameter Programming Enable Voltage Programming Enable Current Oscillator Frequency Address Setup to PROG Low Address Hold after PROG Data Setup to PROG Low Data Hold after PROG P2.7 (ENABLE) High to VPP VPP Setup to PROG Low VPP Hold after PROG PROG Width Address to Data Valid ENABLE Low to Data Valid Data Float after ENABLE PROG High to BUSY Low
Min 11.5
Max 12.5 1.0
Units V mA MHz
IPP(1) 1/tCLCL tAVGL tGHAX tDVGL tGHDX tEHSH tSHGL tGHSL(1) tGLGH tAVQV tELQV tEHQZ tGHBL tWC Note:
3 48tCLCL 48tCLCL 48tCLCL 48tCLCL 48tCLCL 10 10 1
24
s s 110 48tCLCL 48tCLCL s
0
48tCLCL 1.0 2.0 s ms
Byte Write Cycle Time 1. Only used in 12-volt programming mode.
9
Absolute Maximum Ratings*
Operating Temperature.................................. -55C to +125C Storage Temperature ..................................... -65C to +150C Voltage on Any Pin with Respect to Ground .....................................-1.0V to +7.0V Maximum Operating Voltage ............................................ 6.6V DC Output Current...................................................... 15.0 mA *NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
DC Characteristics
TA = -40C to 85C, VCC = 5.0V 20% (unless otherwise noted)
Symbol VIL VIL1 VIH VIH1 VOL VOL1 Parameter Input Low-voltage Input Low-voltage (EA) Input High-voltage Input High-voltage Output Low-voltage
(1) (1)
Condition (Except EA)
Min -0.5 -0.5
Max 0.2 VCC - 0.1 0.2 VCC - 0.3 VCC + 0.5 VCC + 0.5 0.45 0.45
Units V V V V V V V V V V V V
(Except XTAL1, RST) (XTAL1, RST) (Ports 1,2,3) IOL = 1.6 mA IOL = 3.2 mA IOH = -60 A, VCC = 5V 10%
0.2 VCC + 0.9 0.7 VCC
Output Low-voltage (Port 0, ALE, PSEN)
2.4 0.75 VCC 0.9 VCC 2.4 0.75 VCC 0.9 VCC -50 -650 10 50 300 10 20 5 100 40
VOH
Output High-voltage (Ports 1,2,3, ALE, PSEN)
IOH = -25 A IOH = -10 A IOH = -800 A, VCC = 5V 10%
VOH1
Output High-voltage (Port 0 in External Bus Mode) Logical 0 Input Current (Ports 1,2,3) Logical 1 to 0 Transition Current (Ports 1,2,3) Input Leakage Current (Port 0, EA) Reset Pull-down Resistor Pin Capacitance Power Supply Current
IOH = -300 A IOH = -80 A
IIL ITL ILI RRST CIO
VIN = 0.45V VIN = 2V, VCC = 5V 10% 0.45 < VIN < VCC
A A A K pF mA mA A A
Test Freq. = 1 MHz, TA = 25C Active Mode, 12 MHz Idle Mode, 12 MHz
ICC Power-down Mode(2)
VCC = 6V VCC = 3V
Notes:
1. Under steady state (non-transient) conditions, IOL must be externally limited as follows: Maximum IOL per port pin: 10 mA Maximum IOL per 8-bit port: Port 0: 26 mA Ports 1, 2, 3: 15 mA Maximum total IOL for all output pins: 71 mA If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions. 2. Minimum VCC for Power-down is 2V.
10
AT89C51
AT89C51
AC Characteristics
Under operating conditions, load capacitance for Port 0, ALE/PROG, and PSEN = 100 pF; load capacitance for all other outputs = 80 pF.
External Program and Data Memory Characteristics
12 MHz Oscillator Symbol 1/tCLCL tLHLL tAVLL tLLAX tLLIV tLLPL tPLPH tPLIV tPXIX tPXIZ tPXAV tAVIV tPLAZ tRLRH tWLWH tRLDV tRHDX tRHDZ tLLDV tAVDV tLLWL tAVWL tQVWX tQVWH tWHQX tRLAZ tWHLH Parameter Oscillator Frequency ALE Pulse Width Address Valid to ALE Low Address Hold after ALE Low ALE Low to Valid Instruction In ALE Low to PSEN Low PSEN Pulse Width PSEN Low to Valid Instruction In Input Instruction Hold after PSEN Input Instruction Float after PSEN PSEN to Address Valid Address to Valid Instruction In PSEN Low to Address Float RD Pulse Width WR Pulse Width RD Low to Valid Data In Data Hold after RD Data Float after RD ALE Low to Valid Data In Address to Valid Data In ALE Low to RD or WR Low Address to RD or WR Low Data Valid to WR Transition Data Valid to WR High Data Hold after WR RD Low to Address Float RD or WR High to ALE High 43 200 203 23 433 33 0 123 tCLCL-20 0 97 517 585 300 3tCLCL-50 4tCLCL-75 tCLCL-20 7tCLCL-120 tCLCL-20 0 tCLCL+25 400 400 252 0 2tCLCL-28 8tCLCL-150 9tCLCL-165 3tCLCL+50 75 312 10 6tCLCL-100 6tCLCL-100 5tCLCL-90 0 59 tCLCL-8 5tCLCL-55 10 43 205 145 0 tCLCL-10 127 43 48 233 tCLCL-13 3tCLCL-20 3tCLCL-45 Min Max 16 to 24 MHz Oscillator Min 0 2tCLCL-40 tCLCL-13 tCLCL-20 4tCLCL-65 Max 24 Units MHz ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
11
External Program Memory Read Cycle
tLHLL ALE tAVLL PSEN tPLAZ tLLAX PORT 0
A0 - A7
tLLPL
tLLIV tPLIV
tPLPH
tPXAV tPXIZ tPXIX
INSTR IN A0 - A7
tAVIV PORT 2
A8 - A15 A8 - A15
External Data Memory Read Cycle
tLHLL ALE tWHLH PSEN tLLDV tLLWL RD tAVLL PORT 0 tLLAX tRLAZ
DATA IN
tRLRH
tRLDV
tRHDZ tRHDX
A0 - A7 FROM PCL INSTR IN
A0 - A7 FROM RI OR DPL
tAVWL tAVDV PORT 2
P2.0 - P2.7 OR A8 - A15 FROM DPH A8 - A15 FROM PCH
12
AT89C51
AT89C51
External Data Memory Write Cycle
tLHLL ALE tWHLH PSEN tLLWL WR tAVLL PORT 0 tLLAX tQVWX tWLWH
tQVWH
DATA OUT
tWHQX
A0 - A7 FROM PCL INSTR IN
A0 - A7 FROM RI OR DPL
tAVWL PORT 2
P2.0 - P2.7 OR A8 - A15 FROM DPH A8 - A15 FROM PCH
External Clock Drive Waveforms
tCHCX
VCC - 0.5V 0.7 VCC 0.2 VCC - 0.1V 0.45V
tCHCX tCLCH tCHCL
tCLCX tCLCL
External Clock Drive
Symbol 1/tCLCL tCLCL tCHCX tCLCX tCLCH tCHCL Parameter Oscillator Frequency Clock Period High Time Low Time Rise Time Fall Time Min 0 41.6 15 15 20 20 Max 24 Units MHz ns ns ns ns ns
13
Serial Port Timing: Shift Register Mode Test Conditions
(VCC = 5.0 V 20%; Load Capacitance = 80 pF) 12 MHz Osc Symbol tXLXL tQVXH tXHQX tXHDX tXHDV Parameter Serial Port Clock Cycle Time Output Data Setup to Clock Rising Edge Output Data Hold after Clock Rising Edge Input Data Hold after Clock Rising Edge Clock Rising Edge to Input Data Valid Min 1.0 700 50 0 700 Max Variable Oscillator Min 12tCLCL 10tCLCL-133 2tCLCL-117 0 10tCLCL-133 Max s ns ns ns ns Units
Shift Register Mode Timing Waveforms
INSTRUCTION ALE CLOCK 0 1 2 3 4 5 6 7 8
tXLXL tQVXH
WRITE TO SBUF
tXHQX
0 1 2 3 4 5 6 7 SET TI
VALID VALID VALID VALID VALID
OUTPUT DATA CLEAR RI INPUT DATA
tXHDV
VALID VALID
tXHDX
VALID
SET RI
AC Testing Input/Output Waveforms(1)
VCC - 0.5V 0.2 VCC + 0.9V TEST POINTS 0.45V 0.2 VCC - 0.1V
Float Waveforms(1)
V LOAD+ V LOAD V LOAD 0.1V 0.1V
V OL Timing Reference Points V OL +
0.1V
0.1V
Note:
1. AC Inputs during testing are driven at VCC - 0.5V for a logic 1 and 0.45V for a logic 0. Timing measurements are made at VIH min. for a logic 1 and VIL max. for a logic 0.
Note:
1. For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs. A port pin begins to float when 100 mV change from the loaded VOH/VOL level occurs.
14
AT89C51
AT89C51
Ordering Information
Speed (MHz) 12 Power Supply 5V 20% Ordering Code AT89C51-12AC AT89C51-12JC AT89C51-12PC AT89C51-12QC AT89C51-12AI AT89C51-12JI AT89C51-12PI AT89C51-12QI 16 5V 20% AT89C51-16AC AT89C51-16JC AT89C51-16PC AT89C51-16QC AT89C51-16AI AT89C51-16JI AT89C51-16PI AT89C51-16QI 20 5V 20% AT89C51-20AC AT89C51-20JC AT89C51-20PC AT89C51-20QC AT89C51-20AI AT89C51-20JI AT89C51-20PI AT89C51-20QI 24 5V 20% AT89C51-24AC AT89C51-24JC AT89C51-24PC AT89C51-24QC AT89C51-24AI AT89C51-24JI AT89C51-24PI AT89C51-24QI Package 44A 44J 40P6 44Q 44A 44J 40P6 44Q 44A 44J 40P6 44Q 44A 44J 40P6 44Q 44A 44J 40P6 44Q 44A 44J 40P6 44Q 44A 44J 40P6 44Q 44A 44J 40P6 44Q Industrial (-40 C to 85 C) Commercial (0 C to 70 C) Industrial (-40 C to 85 C) Commercial (0 C to 70 C) Industrial (-40 C to 85 C) Commercial (0 C to 70 C) Industrial (-40 C to 85 C) Operation Range Commercial (0 C to 70 C)
Package Type 44A 44J 40P6 44Q 44-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP) 44-lead, Plastic J-leaded Chip Carrier (PLCC) 40-lead, 0.600" Wide, Plastic Dual Inline Package (PDIP) 44-lead, Plastic Gull Wing Quad Flatpack (PQFP)
15
Packaging Information
44A, 44-lead, Thin (1.0 mm) Plastic Gull Wing Quad Flatpack (TQFP) Dimensions in Millimeters and (Inches)*
JEDEC STANDARD MS-026 ACB
12.21(0.478) SQ 11.75(0.458)
44J, 44-lead, Plastic J-leaded Chip Carrier (PLCC) Dimensions in Inches and (Millimeters)
JEDEC STANDARD MS-018 AC
PIN 1 ID
.045(1.14) X 45
PIN NO. 1 IDENTIFY
.045(1.14) X 30 - 45
.012(.305) .008(.203)
0.80(0.031) BSC
0.45(0.018) 0.30(0.012)
.656(16.7) SQ .650(16.5) .032(.813) .026(.660) .695(17.7) SQ .685(17.4)
.630(16.0) .590(15.0) .021(.533) .013(.330)
.050(1.27) TYP .500(12.7) REF SQ
10.10(0.394) SQ 9.90(0.386) 0 7 1.20(0.047) MAX
.043(1.09) .020(.508) .120(3.05) .090(2.29) .180(4.57) .165(4.19)
0.20(.008) 0.09(.003)
.022(.559) X 45 MAX (3X)
0.75(0.030) 0.45(0.018) 0.15(0.006) 0.05(0.002)
Controlling dimension: millimeters 40P6, 40-lead, 0.600" Wide, Plastic Dual Inline Package (PDIP) Dimensions in Inches and (Millimeters) 44Q, 44-lead, Plastic Quad Flat Package (PQFP) Dimensions in Millimeters and (Inches)*
JEDEC STANDARD MS-022 AB
2.07(52.6) 2.04(51.8)
PIN 1
13.45 (0.525) SQ 12.95 (0.506) PIN 1 ID
.566(14.4) .530(13.5)
0.80 (0.031) BSC
.090(2.29) MAX .005(.127) MIN
0.50 (0.020) 0.35 (0.014)
1.900(48.26) REF .220(5.59) MAX SEATING PLANE .161(4.09) .125(3.18) .110(2.79) .090(2.29) .065(1.65) .041(1.04) .630(16.0) .590(15.0) 0 REF 15 .690(17.5) .610(15.5)
.065(1.65) .015(.381) .022(.559) .014(.356)
10.10 (0.394) SQ 9.90 (0.386) 2.45 (0.096) MAX 0.17 (0.007) 0.13 (0.005) 0 7
.012(.305) .008(.203)
1.03 (0.041) 0.78 (0.030)
0.25 (0.010) MAX
Controlling dimension: millimeters 16
AT89C51
Atmel Headquarters
Corporate Headquarters
2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600
Atmel Operations
Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759
Europe
Atmel U.K., Ltd. Coliseum Business Centre Riverside Way Camberley, Surrey GU15 3YL England TEL (44) 1276-686-677 FAX (44) 1276-686-697
Atmel Rousset
Zone Industrielle 13106 Rousset Cedex France TEL (33) 4-4253-6000 FAX (33) 4-4253-6001
Asia
Atmel Asia, Ltd. Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369
Japan
Atmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581
Fax-on-Demand
North America: 1-(800) 292-8635 International: 1-(408) 441-0732
e-mail
literature@atmel.com
Web Site
http://www.atmel.com
BBS
1-(408) 436-4309
(c) Atmel Corporation 2000. Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life suppor t devices or systems. Marks bearing
(R)
and/or
TM
are registered trademarks and trademarks of Atmel Corporation. Printed on recycled paper.
0265G-02/00/xM
Terms and product names in this document may be trademarks of others.


▲Up To Search▲   

 
Price & Availability of AT89C5100

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X